Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 9
--	-----------------

Problem 32 (4 Points). Suppose that \mathcal{I} is an ideal on the set $Borel(\mathbb{R})$ of Borel subsets of \mathbb{R} .

- (a) Check that the inclusion on $Borel(\mathbb{R})$ induces a partial order on $Borel(\mathbb{R})/\mathcal{I}$.
- (b) Show that $Borel(\mathbb{R})/\mathcal{M}$ and $Borel(\mathbb{R})/\mathcal{N}$ are c.c.c.

Problem 33 (4 Points). Suppose that *B* is a σ -complete Boolean algebra, i.e. *B* is a Boolean algebra such that infima and suprema of countable sets exist. Suppose that \mathcal{I} is a σ -ideal on *B*, i.e. \mathcal{I} is downwards closed, $0 \in \mathcal{I}$, $1 \notin I$, and \mathcal{I} is closed under suprema of countable sets.

- (a) Check that B/\mathcal{I} is a Boolean algebra.
- (b) If B/\mathcal{I} is c.c.c., show that B/\mathcal{I} is a complete Boolean algebra.
- **Problem 34** (2 Points). (a) Show that $Borel(\mathbb{R})/\mathcal{M}$ has a countable dense subset and hence there is a dense embedding $f \colon \mathbb{P} \to Borel(\mathbb{R})/\mathcal{M}$, where \mathbb{P} denotes Cohen forcing.
 - (b) Check that there is a dense embedding $g: \mathbb{Q} \to Borel(\mathbb{R})/\mathcal{N}$, where \mathbb{Q} denotes random forcing.

Problem 35 (8 Points). Suppose that M is a transitive model of ZFC. A set $S \subseteq \mathbb{R}$ is *Solovay over* M if there is a formula $\varphi(x, \vec{y})$ and $\vec{a} \in M$ such that for all $x \in \mathbb{R}$ such that x codes an M-generic filter for some forcing $P \in M$:

$$x \in S \iff M[x] \vDash \varphi(x, \vec{a}).$$

Now suppose that S is Solovay over M.

Let P denote $Borel(\mathbb{R})$ with $A \leq_P B : \iff A \setminus B \in \mathcal{M}$. Let C(M) denote the set of $(P^*)^M$ -generic reals (i.e. Cohen reals) x over M, i.e. such that

$$\{x\} = \bigcap \{[a,b]^{M[G]} \mid a,b \in \mathbb{Q}, \ a < b, \ [a,b]^M \in G \}$$

for some *M*-generic filter *G* for P^M .

Let Q denote $Borel(\mathbb{R})$ with $A \leq_{\mathbb{Q}} B : \iff A \setminus B \in \mathcal{N}$. Let R(M) denote the set of $(Q^*)^M$ -generic reals x (i.e. random reals) over M, i.e. such that

$$\{x\} = \bigcap \{d^{M[G]} \mid d \text{ is an } F \text{-code in } M \text{ and } d^M \in G\}$$

for some *M*-generic filter *G* for Q^M .

(a) Show that there is a Borel set A ⊆ R with S ∩ C(M) = A ∩ C(M).
(*Hint: Find an* F_σ set A with [A]_M = [[φ(x)]]_P, where x is a (P*)^M-name in M for the (P*)^M-generic real, and apply the forcing theorem over M. An F_σ set A is of the form A = ⋃_{n∈ω} A_n, where each A_n is closed)

(b) Conclude that S has the property of Baire if $\mathbb{R} \setminus C(M) \in \mathcal{M}$.

 2

- (c) Show that there is a Borel set $A \subseteq \mathbb{R}$ with $S \cap R(M) = A \cap R(M)$ (*Hint: Find an* F_{σ} set A with $[A]_{\mathcal{N}} = \llbracket \varphi(\dot{x}) \rrbracket_Q$, where \dot{x} is a $(Q^*)^M$ -name in M for the $(Q^*)^M$ -generic real.)
- (d) Conclude that S is Lebesgue measurable if $\mathbb{R} \setminus R(M) \in \mathcal{N}$.

Please hand in your solutions on Monday, January 06 before the lecture.